Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Glob Ment Health (Camb) ; 11: e49, 2024.
Article in English | MEDLINE | ID: mdl-38690569

ABSTRACT

Various psychosocial and psychological interventions have been developed to reduce schizophrenia relapse prevention. A better understanding of these active interventions is important for clinical practice and for meaningful allocation of resources. However, no bibliometric analysis of this area has been conducted. Studies were retrieved from the Web of Science Core Collection database. The publication outputs and cooperation of institutions were visualized with Origin 2021. Global cooperation was visualized using ArcGIS Pro3.0. VOSviewer was used to generate visualizations of network of authors and keywords. The number of annual publications generally showed a fluctuating upward trend over the past 20 years. Germany published the most relevant articles (361, 26.76%). The Technical University of Munich was the most productive institution (70, 9.86%). Leucht Stefan published the most articles (46, 6.48%) and had the highest number of citations (4,375 citations). Schizophrenia Research published the most studies (39, 5.49%). Keywords were roughly classified into three clusters: cognitive behavioral therapy (CBT), family interventions and family psychoeducation and other factors related to interventions. The findings provided the current status of research on psychosocial and psychological interventions for schizophrenia relapse prevention from a bibliometric perspective. Recent research has mainly focused on CBT, family interventions and family psychoeducation.

2.
Front Oncol ; 14: 1332372, 2024.
Article in English | MEDLINE | ID: mdl-38680857

ABSTRACT

In acute promyelocytic leukemia (APL), hemorrhage, particularly intracranial hemorrhage, is the most common cause of early death. A central venous catheter (CVC) may provide a greater guarantee of safety and comfort to APL patients. However, CVCs have seldom been attempted in APL patients during induction therapy because of concerns about increasing the risk of hemorrhagic complications after this invasive procedure. To evaluate the hemorrhagic risk after CVC placement in APL patients during induction therapy, we retrospectively analyzed 95 newly diagnosed patients with APL from January 2010 to December 2022. Among these patients, 39 patients in the CVC group and 56 patients in the non-CVC group were included. Laboratory and clinical parameters of the two groups were collected and compared. There were no significant differences in median platelet, fibrinogen (Fbg), D-dimer, prothrombin time (PT), white blood count (WBC) and hemoglobin (Hb) between the CVC and non-CVC groups on the first day of the visit (day 0) and the following days (day 4, day 7, day 11, day 14, day 18 and day 21) (p = 0.382, p = 0.805, p = 0.456, p = 0.902, p = 0.901 and p = 0.097, respectively). The consumption of transfused platelets and Fbg was not significantly different between the CVC group and non-CVC group (5.0 vs. 4.5 units, p = 0.34, and 6.8 vs. 6.0, p = 0.36, respectively). The last day of platelet and Fbg transfusion was also not significantly different (21 vs. 19, p = 0.238 and 7.5 vs. 8.5, p = 0.684, respectively). The incidences of total hemorrhagic events and hemorrhagic death were lower in the CVC group than in the non-CVC group (17.9% vs. 37.5%, p = 0.04 and 0% vs. 16.1%, p = 0.01, respectively). The 30-day survival rate was not significantly different (92.3% vs. 82.1%, respectively, p = 0.145) for the CVC group compared with the non-CVC group. Our study suggested that CVCs did not increase the hemorrhagic risk in APL patients during induction therapy and that a CVC should be considered in this type of clinical situation.

3.
Sci Total Environ ; 924: 171557, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38460704

ABSTRACT

Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.


Subject(s)
Bioelectric Energy Sources , Wastewater , Animals , Swine , Prospective Studies , Bioreactors , Technology
4.
Heliyon ; 10(5): e27214, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463855

ABSTRACT

Rhinoviruses (RVs) are major causes of the common cold and are related to severe respiratory tract diseases, leading to a considerable economic burden and impacts on public health. Available and stable viral resources of rhinoviruses for laboratory use are important for promoting studies on rhinoviruses and further vaccine or therapeutic drug development. Reverse genetic technology can be useful to produce rhinoviruses and will help to promote studies on their pathogenesis and virulence. In this study, rhinovirus A89, an RV-A species that has been found to be highly involved in hospitalization triggered by RV infections, was selected to construct an infectious clone based on its sequence as a representative. The viral mRNA produced by a T7 RNA transcript system was transfected into H1-HeLa cells, and the rescued RV-A89 viruses were harvested and confirmed by sequencing. The rescued RV-A89 induced a similar cytopathic effect (CPE) and shared almost identical growth kinetics curves with parental RV-A89. Moreover, 9A7, a prescreened monoclonal antibody against the parental RV-A89, had a good and specific reaction with the rescued RV-A89, and further characterization showed almost the same morphology and protein composition of both viruses; thus, recombinant RV-A89 with similar biological characterization and virulence to the parental virus was obtained. In summary, the infectious clone of RV-A89 was successfully established, and the development of reverse genetic technology for rhinovirus will provide a framework for further studies on rhinoviruses.

5.
Eur J Med Res ; 29(1): 121, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355613

ABSTRACT

INTRODUCTION: Epilepsy is a common neurological disorder that presents with challenging mechanisms and treatment strategies. This study investigated the neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epileptic rats and explored its potential mechanisms. METHODS: Lithium chloride pilocarpine was used to induce an epileptic model in rats, and the effects of quinpirole on seizure symptoms and cognitive function were evaluated. The Racine scoring method, electroencephalography, and Morris water maze test were used to assess seizure severity and learning and memory functions in rats in the epileptic group. Additionally, immunohistochemistry and Western blot techniques were used to analyze the protein expression levels and morphological changes in glutamate receptor 2 (GluR2; GRIA2), BAX, and BCL2 in the hippocampi of rats in the epileptic group. RESULTS: First, it was confirmed that the symptoms in rats in the epileptic group were consistent with features of epilepsy. Furthermore, these rats demonstrated decreased learning and memory function in the Morris water maze test. Additionally, gene and protein levels of GluR2 in the hippocampi of rats in the epileptic group were significantly reduced. Quinpirole treatment significantly delayed seizure onset and decreased the mortality rate after the induction of a seizure. Furthermore, electroencephalography showed a significant decrease in the frequency of the spike waves. In the Morris water maze test, rats from the quinpirole treatment group demonstrated a shorter latency period to reach the platform and an increased number of crossings through the target quadrant. Network pharmacology analysis revealed a close association between quinpirole and GluR2 as well as its involvement in the cAMP signaling pathway, cocaine addiction, and dopaminergic synapses. Furthermore, immunohistochemistry and Western blot analysis showed that quinpirole treatment resulted in a denser arrangement and a more regular morphology of the granule cells in the hippocampi of rats in the epileptic group. Additionally, quinpirole treatment decreased the protein expression of BAX and increased the protein expression of BCL2. CONCLUSION: The current study demonstrated that quinpirole exerted neuroprotective effects in the epileptic rat model induced by lithium chloride pilocarpine. Additionally, it was found that the treatment not only alleviated the rats' seizure symptoms, but also improved their learning and memory abilities. This improvement was linked to the modulation of protein expression levels of GLUR2, BAX, and BCL2. These findings provided clues that would be important for further investigation of the therapeutic potential of quinpirole and its underlying mechanisms for epilepsy treatment.


Subject(s)
Epilepsy , Neuroprotective Agents , Rats , Animals , Pilocarpine/toxicity , Pilocarpine/therapeutic use , Lithium Chloride/therapeutic use , Neuroprotective Agents/adverse effects , Quinpirole/adverse effects , bcl-2-Associated X Protein/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , Seizures/chemically induced , Seizures/drug therapy , Disease Models, Animal
6.
Opt Lett ; 48(22): 5996-5999, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966772

ABSTRACT

The operation of cavity-enhanced techniques usually requires independent pre-calibration of the mirror reflectivity to precisely quantify the absorption. Here we show how to directly calibrate the effective mirror reflectivity without using any gas samples of known concentration or high-speed optical/electrical devices. Leveraging a phase modulator to generate sidebands, we are able to record Pound-Drever-Hall error signals shaped by cavity modes that can reveal the effective reflectivity after waveform analysis. As an example, we demonstrated the reflectivity calibration of a pair of near-infrared mirrors over 80 nm with a free spectral range-limited resolution, illustrating a reflectivity uncertainty of 2 × 10-5 in the center part of the refection wavelength range of the mirrors and larger at the edges. With an effective reflectivity of 0.9982 (finesse ∼1746) inferred at 1531.6 nm, a short ∼ 8-cm Fabry-Pérot cavity achieved a minimum detectable absorption coefficient of 9.1 × 10-9 cm-1 for trace C2H2 detection. This method, by providing convenient calibration in an almost real-time manner, would enable more practical cavity-enhanced gas measurement even with potential mirror reflectivity degradation.

7.
Toxics ; 11(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37888692

ABSTRACT

Tetracycline is frequently found in various environments and poses significant ecological risks. Calcium hydroxide-modified biochar has shown potential as a material for removing multiple classes of pollutants from wastewater streams. The tetracycline-adsorption performance and mechanism of alkali-modified biochars derived from nine wastes (corn straw, rice straw, swine manure, cypress powder, wheat straw, peanut shell, walnut shell powder, soybean straw, and corncobs) were investigated in the study. Among the four alkalis tested, calcium hydroxide exhibited the most effective modification effects at a pyrolysis temperature of 500 °C. Straw biomass was most suitable to be modified by calcium hydroxide, and calcium hydroxide-modified biochar showed the highest adsorption performance for tetracycline. The maximum adsorption capacities were 8.22 mg g-1 for pristine corn straw biochar and 93.46 mg g-1 for calcium hydroxide-modified corn straw biochar. The tetracycline adsorption mechanism by calcium hydroxide-modified corn straw biochar involved hydrogen bonding, oxygen-containing functional groups, Ca2+ metal complexation, and electrostatic attraction. Consequently, calcium hydroxide-modified corn straw biochar emerges as an environment-friendly, cost-effective, and efficient tetracycline adsorbent.

8.
ACS Appl Mater Interfaces ; 15(39): 46559-46570, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747785

ABSTRACT

Commercialization applications of proton exchange membrane fuel cells (PEMFCs) are throttled by the durability issues of the electrodes prepared by using catalyst inks. Probing into a desirable catalyst/ionomer interface by adjusting the catalyst inks is an effective way for obtaining high-durability electrodes. The present study investigated quantitatively the catalyst/ionomer interfaces based on the viscosity (η) property of the isopropyl alcohol (IPA) and dipropylene glycol (DPG) nonaqueous mixture solvent for the first time. Accelerated stress test (AST) showed that η as one of the characteristic parameters of the solvent had a threshold effect on the durability of electrodes. The electrodes in the half-cell and single cell all exhibited the highest durability using IPA:DPG = 2:6 (η = 27.00 cP) as the dispersion solvent in this work, embodied by its ECSA loss rate, and the cell potential loss was minimum after AST. The ECSA loss mechanism showed that a fine catalyst/ionomer interface structure was created for the highest durability electrode by regulating the η values of the solvent, and the carbon corrosion loss (le) and Pt particle dissolution loss (ld) were weakened. Based on the molecular dynamics (MD) simulation and 19F NMR spectra results, the solvent ratio (various η and similar ε and δ) affected the dispersion states of the ionomer. For the catalyst inks with the highest durability (IPA:DPG = 2:6), the Nafion backbone and side chain presented a higher mobility behavior in the solvent and tended to show the structure of extension separation and the respective aggregation of hydrophilic/hydrophobic phases. Meanwhile, Pt slab models suggested that the side chain of Nafion more easily adhered to the Pt interface zone, while the backbone was pushed toward the carbon support interface zone as more DPG molecules distributed on the Pt surface, which reduced the dissolution of Pt particles and the corrosion of the carbon support. These catalyst/ionomer interface structures tailored by regulating the solvent η values provide insights into improving the electrode durability.

9.
Water Res ; 245: 120571, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37683523

ABSTRACT

Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.

10.
Environ Res ; 236(Pt 1): 116701, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37474090

ABSTRACT

The great challenges induced by global climate change coupled with rapid urbanization underline the growing urgency for a change in stormwater management with a novel integrated approach. This study conducted a comprehensive review on state-of-the-art knowledge in the research field of green storm infrastructure (GSI) using bibliometric analysis. A corpus of 3988 GSI-related publications (2000-2021) extracted from the Web of Science database was used to evaluate the scientific output in GSI research through the "Bibliometrix" R package and "CiteSpace". Ever since 2010, the number of publications per year exhibited an exponential increase, with the annual publication growth rate of 28.61%. Notably, the United States (23.55%) and China (19.58%) contributed most in GSI publications. "Water" (306) was identified as the most relevant journal in GIS research field, followed by "Sustainability" (252) and "Science of the Total Environment" (200). Cluster analysis unveiled the predominant research themes, i.e., "Conceptual development of GSI" (69.25%), "Adaptation of GSI" (46.89%), and "Performance evaluation of GSI practices" (18.28%). Research foci have generally shifted from conventional engineering-based frameworks (e.g., reduce stormwater runoff and enhance water quality) to ecological-based multi-elements (e.g., preserve natural resources, augment urban biodiversity and optimize land-use patterns). This systematic review concludes trends, challenges and future research prospects of GSI, and aims to provide reference and guidance for decision-makers on the development of a more dynamic, resilient, and robust integrated GSI approach for sustainable urban stormwater management.


Subject(s)
Ecosystem , Water Quality , Urbanization , Natural Resources , Biodiversity , Rain
11.
Front Neurol ; 14: 1170169, 2023.
Article in English | MEDLINE | ID: mdl-37521281

ABSTRACT

Anti-NMDA receptor encephalitis is an autoimmune encephalitis well- known to pediatric neurologists. The characteristic combination of symptoms and detection of NMDA receptor antibody can confirm the diagnosis. Most children respond well to immunosuppressive therapy. Anti-GABAB receptor encephalitis usually occurs in adult patients. Most patients present clinically with symptoms of limbic encephalitis. Cases in pediatric patients are rare. Cerebral venous thrombosis also has a very low incidence in children without underlying diseases. Patients usually present with headaches, convulsions, and focal deficits. Anticoagulants are the first choice treatment. We report a boy initially diagnosed with Labbe vein thrombosis and later tested positive for both NMDA and GABAB receptors. Anticoagulants did not relieve the boy's symptoms, and immunosuppressive therapy achieved good results. The antibody titers were significantly reduced or even turned negative. Although the Labbe vein was not recanalized at four months follow-up, the brain lesion was significantly absorbed. We learn from this case that a child can be inflicted with cerebral venous thrombosis and autoimmune encephalitis simultaneously. Child patients respond well to treatment.

12.
Environ Toxicol ; 38(10): 2298-2309, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37334766

ABSTRACT

Pneumonia is a condition characterized by lung damage resulting from a robust immune response by the host. While the defense and immunity against bacterial lung infections have been extensively studied, little is known about the specific immune factors involved in the progression of bacterial pneumonia. To address this knowledge gap, our study aimed to compare normal lung tissues with pneumonia tissues using various techniques, including HE staining, RNA sequencing, RT-PCR, and Elisa assay. Our analysis revealed a significant increase in the levels of interleukin-6 (IL-6) in pneumonia tissues compared to normal lung tissues. To further investigate the underlying mechanism, we extracted exosomes from both pneumonia and normal lung tissues using ultracentrifugation. The exosomes were then examined using electron microscopy, diameter analysis, and western blot assay. RNA sequencing of the exosomes revealed an upregulation of several microRNAs (miRNAs), with miR-362 exhibiting the most significant change. This finding was confirmed through RT-PCR analysis conducted on lung tissues and alveolar lavage fluid. To gain insights into the specific target genes of miR-362, we employed bioinformatics analysis, which identified VENTX as a potential target gene. This finding was further validated through RT-PCR, western blot, and luciferase assay. Our experimental evidence demonstrated that miR-362 regulates VENTX expression, as evidenced by the use of miR-362 mimics or inhibitors on lung cells. Furthermore, we discovered that exosomes derived from pneumonia tissues upregulate IL-6 production through the miR-362/VENTX axis. Importantly, the blocking of IL-6 generation, which is facilitated by miR-362 inhibitor and VENTX overexpression lentivirus, can be achieved by treating exosomes. Moreover, we conducted in vivo experiments using pneumonia models. Rats were treated with IL-6, miR-362 mimics, or VENTX knock-down lentivirus. The results demonstrated a worse prognosis for rats treated with these factors, indicating their potential as prognostic markers. Taken together, our study suggests that exosomes facilitate IL-6 generation by transferring miR-362, thereby suppressing VENTX transcription. Consequently, the IL-6/miR-362/VENTX axis emerges as a promising therapeutic target for pneumonia.


Subject(s)
Exosomes , MicroRNAs , Pneumonia , Rats , Animals , Interleukin-6/genetics , Interleukin-6/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Pneumonia/genetics , Pneumonia/metabolism , Lung/metabolism
13.
Sci Rep ; 13(1): 9145, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277502

ABSTRACT

With the rapid economic development of China's coastal areas and the growth of industry and population, the problem of heavy metal contamination in estuarine waters is increasing in sensitivity and seriousness. In order to accurately and quantitatively describe the current status of heavy metal contamination and identify sensitive aquatic organisms with high ecological risks, five heavy metals in eight estuaries of the Pearl River were monitored at monthly intervals from January to December in 2020, and the ecological risks of aquatic organisms induced by heavy metals were evaluated using Risk quotients (RQ) and species sensitivity distributions (SSD) methods. The results showed that the concentrations of As, Cu, Pb, Hg and Zn in estuaries of the Pearl River were (0.65-9.25) µg/L, (0.07-11.57) µg/L, (0.05-9.09) µg/L, (< 0.40) µg/L and (0.67-86.12) µg/L, respectively. With the exception of Hg in Jiaomen water, the other heavy metals in each sampling site met or exceed the water quality standard of Grade II. The aquatic ecological risks of As, Pb and Hg were generally low in the waters of the Pearl River estuary, but individual aquatic organisms are subject to elevated ecological risks due to Cu and Zn. The content of Zn has a lethal effect on the crustaceans Temora Stylifera, and the content of Cu has a serious impact on the mollusks Corbicula Fluminea and has a certain impact on the crustaceans Corophium sp. and the fish Sparus aurata. Heavy metal levels and joint ecological risks (msPAF) in the Humen, Jiaomen, Hongqimen, and Hengmen estuaries were slightly higher than in other estuaries, and the Yamen estuary had the lowest contration of heavy metals and ecological risk. Research findings can serve as a basis for formulating water quality standards for heavy metals and for protecting aquatic biodiversity in the Pearl River Estuary.


Subject(s)
Copepoda , Mercury , Metals, Heavy , Sea Bream , Water Pollutants, Chemical , Animals , Aquatic Organisms , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Geologic Sediments , Rivers , Lead , Estuaries , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment , China
14.
J Environ Manage ; 344: 118407, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37356330

ABSTRACT

Green infrastructure (GI) is used as an alternative and complement to traditional urban drainage system for mitigating urban stormwater issues mainly caused by climate change and urbanization. The combination of hydrological model and optimization algorithm can automatically find the optimal solution under multiple objectives. Given the multi-functional characteristics of GI, choosing the optimization objectives of GI are critical for multiple stakeholders. This study proposes a GI optimization method considering spatial functional zoning. Based on the basic conditions, the study area is divided into the flood risk control zone (FRCZ) and the total runoff control zone (TRCZ). The integrated model coupling hydrological model and optimization algorithm is applied to obtain the Pareto fronts and corresponding non-dominated solutions. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used to support the decision-making process. The optimal solution obtained for the FRCZ achieves a flood risk reduction rate of 60.49% with an average life cycle cost per year of 0.20 × 108 Chinese Yuan (CNY); The optimal solution obtained for the TRCZ achieves a total runoff reduction rate of 22.83% with an average life cycle cost per year of 0.17 × 108 CNY. This study provides a reference for stakeholders in GI planning and design.


Subject(s)
Rain , Urbanization , Hydrology , Floods , Algorithms , Cities
15.
Environ Sci Pollut Res Int ; 30(31): 76595-76605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37243771

ABSTRACT

The process of phosphine production by phosphate-reducing bacteria Pseudescherichia sp. SFM4 has been well studied. Phosphine originates from the biochemical stage of functional bacteria that synthesize pyruvate. Stirring the aggregated bacterial mass and supplying pure hydrogen could lead to an increase of 40 and 44% phosphine production, respectively. Phosphine was produced when bacterial cells agglomerated in the reactor. Extracellular polymeric substances secreted on microbial aggregates promoted the formation of phosphine due to the presence of groups containing phosphorus element. Phosphorus metabolism gene and phosphorus source analysis implied that functional bacteria used anabolic organic phosphorus, especially containing carbon-phosphorus bonds, as a source with [H] as electron donor to produce phosphine.


Subject(s)
Phosphines , Phosphorus , Phosphorus/analysis , Bacteria/metabolism , Enterobacteriaceae
16.
Front Neurosci ; 17: 1151430, 2023.
Article in English | MEDLINE | ID: mdl-37179544

ABSTRACT

Background: Anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis is infrequently reported but more and more recognizable in children. Here we give detailed description of the clinical features and long-term outcome of three cases of childhood onset anti-LGI1 encephalitis. Methods: Three anti-LGI1 encephalitis patients were hospitalized in the Department of Pediatrics at Qilu Hospital of Shandong University. Data about the clinical manifestations, treatments and long-term follow-up outcomes were described in detail. Results: Case 1 showed an adolescent girl with initiating symptom of acute-onset frequent focal seizures. Her serum LGI1-antibody test was positive, and she had a good response to antiseizure medication (ASM) and IVIG. Case 2 showed a preschool-age boy with long-period refractory focal seizures and recent behavioral change. Both serum and cerebrospinal fluid (CSF) tests of LGI1-antibody were positive, and the MRI showed progressive atrophy in the left hemisphere. The symptoms got improved after receiving second-line immunotherapy initially but there are still the sequelae of drug-resistant epilepsy and mild to moderate intellectual disability. Case 3 showed an adolescent boy with initiating symptom of acute-onset frequent focal seizures. Both serum and CSF tests of LGI1-antibody were positive, and he had a good response to immunotherapy. By analyzing all literature-reported 19 pediatric cases, we found pediatric anti-LGI1 encephalitis is more common in female and adolescent. Seizures and behavioral changes were the most common symptoms. CSF pleocytosis and LGI1-antibodies results were mostly negative. Most patients showed good response to immunotherapy. Conclusion: Childhood onset anti-LGI1 encephalitis is a heterogeneous clinical syndrome, ranging from typical limbic encephalitis to isolating focal seizures. It is important to test autoimmune antibodies when encountering similar cases and repeat antibody testing if necessary. Timely recognition leads to earlier diagnosis and more rapid initiation of effective immunotherapy and potentially better outcomes.

17.
Sci Total Environ ; 880: 163470, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37076008

ABSTRACT

Global climate change and rapid urbanization, mainly driven by anthropogenic activities, lead to urban flood vulnerability and uncertainty in sustainable stormwater management. This study projected the temporal and spatial variation in urban flood susceptibility during the period 2020-2050 on the basis of shared socioeconomic pathways (SSPs). A case study in Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was conducted for verifying the feasibility and applicability of this approach. GBA is predicted to encounter the increase in extreme precipitation with high intensity and frequency, along with rapid expansion of constructed areas, resulting in exacerbating of urban flood susceptibility. The areas with medium and high flood susceptibility will be expected to increase continuously from 2020 to 2050, by 9.5 %, 12.0 %, and 14.4 % under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. In terms of the assessment of spatial-temporal flooding pattern, the areas with high flood susceptibility are overlapped with that in the populated urban center in GBA, surrounding the existing risk areas, which is consistent with the tendency of construction land expansion. The approach in the present study will provide comprehensive insights into the reliable and accurate assessment of urban flooding susceptibility in response to climate change and urbanization.


Subject(s)
Floods , Urbanization , Climate Change , Hong Kong , Socioeconomic Factors
18.
Environ Sci Pollut Res Int ; 30(22): 63036-63051, 2023 May.
Article in English | MEDLINE | ID: mdl-36952164

ABSTRACT

Identifying spatiotemporal variation patterns and predicting future water quality are critical for rational and effective surface water management. In this study, an exploratory analysis and forecast workflow for water quality in Pearl River, Guangzhou, China, was established based on the 4-h interval dataset selected from 10 stations for water quality monitoring from 2019 to 2021. The multiple statistical techniques, such as cluster analysis (CA), principal component analysis (PCA), correlation analysis (CoA), and redundancy analysis (RDA), as well as data-driven model (i.e., gated recurrent unit (GRU)), were applied for assessing and predicting the water quality in the basin. The investigated sampling stations were classified into 3 categories based on differences in water quality, i.e., low, moderate, and high pollution regions. The average water quality indexes (WQI) values ranged from 38.43 to 92.63. Nitrogen was the most dominant pollutant, with high TN concentrations of 0.81-7.67 mg/L. Surface runoff, atmospheric deposition, and anthropogenic activities were the major contributors affecting the spatiotemporal variations in water quality. The decline in river water quality during the wet season was mainly attributed to increased surface runoff and extensive human activities. Furthermore, the short-term prediction of river water quality was achieved using the GRU model. The result indicated that for both DLCK and DTJ stations, the WQI for the 5-day lead time were predicted with accuracies of 0.82; for the LXH station, the WQI for the 3-day lead time was forecasted with an accuracy of 0.83. The finding of this study will shed a light on an effective reference and systematic support for spatio-seasonal variation and prediction patterns of water quality.


Subject(s)
Water Pollutants, Chemical , Water Quality , Humans , China , Environmental Monitoring/methods , Rivers , Spatio-Temporal Analysis , Water Pollutants, Chemical/analysis
19.
Water Res ; 232: 119720, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36774753

ABSTRACT

Climate change has led to the increased intensity and frequency of extreme meteorological events, threatening the drainage capacity in urban catchments and densely built-up cities. To alleviate urban flooding disasters, strategies coupled with green and grey infrastructure have been proposed to support urban stormwater management. However, most strategies rely largely on diachronic rainfall data and ignore long-term climate change impacts. This study described a novel framework to assess and to identify the optimal solution in response to uncertainties following climate change. The assessment framework consists of three components: (1) assess and process climate data to generate long-term time series of meteorological parameters under different climate conditions; (2) optimise the design of Grey-Green infrastructure systems to establish the optimal design solutions; and (3) perform a multi-criteria assessment of economic and hydrological performance to support decision-making. A case study in Guangzhou, China was carried out to demonstrate the usability and application processes of the framework. The results of the case study illustrated that the optimised Grey-Green infrastructure could save life cycle costs and reduce total outflow (56-66%), peak flow (22-85%), and TSS (more than 60%) compared to the fully centralised grey infrastructure system, indicating its high superior in economic competitiveness and hydrological performance under climate uncertainties. In terms of spatial configuration, the contribution of green infrastructure appeared not as critical as the adoption of decentralisation of the drainage networks. Furthermore, under extreme drought scenarios, the decentralised infrastructure system exhibited an exceptionally high degree of removal performance for non-point source pollutants.


Subject(s)
Climate Change , Rain , Time Factors , Cities , China
20.
Environ Sci Technol ; 57(4): 1776-1787, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656265

ABSTRACT

The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.


Subject(s)
Flame Retardants , Microbiota , Oryza , Rhizosphere , Esters/metabolism , Flame Retardants/analysis , Organophosphates , Biotransformation , Phosphates , Metabolic Networks and Pathways , Environmental Monitoring , China
SELECTION OF CITATIONS
SEARCH DETAIL
...